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Abstract

In this paper, we investigate the existence and uniqueness of solution of the periodic boundary value
problem for nonlinear impulsive fractional differential equation involving Riemann-Liouville fractional
derivative by using Banach contraction principle.
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1. Introduction

This paper deals with the existence of solutions for nonlinear impulsive fractional differential

equation with periodic boundary conditions

Du(t) — Au(t) = f(t,u(t)), te(0,1]\{}, 0<a<l, (1.1)
Jim, tu(t) = u(1), (1.2)
tlirlg(t — )" (u(t) = ult)) = I(u(t)), (1.3)

where D? is the standard Riemann-Liouville fractional derivative, A € R, 0 < t; < 1, I €
C(R,R), f is continuous at every point (¢,u) € [0,1] X R.

For clarity and brevity, we restrict our attention to BVPs with one impulse, the difference

between the theory of one or an arbitrary number of impulses is quite minimal.

In [1], the author investigated the existence and uniqueness of solution to initial value

problems for a class of fractional differential equations
D%u(t) = f(t,u(t)), te€(0,7T] 0<a<l, (1.4)
tlfau(t)’tzo = Uy, (1.5)

by using the method of upper and lower solutions and its associated monotone iterative.
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In [2], the existence and uniqueness of solution of the following fractional differential equa-

tion with periodic boundary value condition

DPu(t) — Mu(t) = f(t,u(t)), te(0,1]] 0<d<1, (1.6)
th%lJr t170u(t) = u(1), (1.7)

was discussed by using the fixed point theorem of Schaeffer and the Banach contraction prin-

ciple.

Differential equation with fractional order have recently proved valuable tools in the mod-
eling of many phenomena in various fields of science and engineering [3-7]. There has also been
a significant theoretical development in fractional differential equations in recent years, see for
examples [8-19]. Recently, many researchers paid attention to existence result of solution of
the initial value problem and boundary value problem for fractional differential equations, such

as [20-25].

Impulsive differential equations are now recognized as an excellent source of models to
simulate process and phenomena observed in control theory, physics, chemistry, population
dynamics, biotechnology, industrial robotic, optimal control, etc. [26,27]. Periodic boundary
value for impulsive differential equation has drawn much attention, see [28-31]. Anti-periodic
problems constitute an important class of boundary value problems and have recently received
considerable attention. The recent results on anti-periodic BVPs or impulsive anti-periodic
BVPs of fractional differential equations can be found in [32-35]. But till now, the theory
of boundary value problems for nonlinear fractional differential equations is still in the initial
stages. For some recent work on impulsive fractional differential equations, see [36-41] and the

references therein.

To the best of the authors knowledge, no one has studied the existence of solutions for BVP
(1.1)-(1.3). The purpose of this paper is to study the existence and uniqueness of solution of
the periodic boundary value problem for nonlinear impulsive fractional differential equation

involving Riemann-Liouville fractional derivative by using Banach contraction principle.
2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper. Let C(a,b] (C|a,b]) be the Banach space of all continuous real functions
defined on (a,b] ([a,b]).
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In order to define the solution of (1.1)-(1.3) we shall consider the space
PCT[O, 1] = {1‘ : tr.%"[o,tﬂ S C[O,tl], (t — tl)rx’(tl,l} S C(tl, 1],

there exist lim (¢t — 1) z(¢t) and x(t] ) with z(t]) = z(t1)},

t—tt

where constant 0 < r < 1. It is easy to check that the space PC,[0,1] is a Banach space with

norm
|||, = max{sup{t"|x(t)| : t € [0,t1]}, sup{(t —t1)"|=(t)| : t € (t1,1]}}.
Remark 2.1. If » = 0, then the definition of PC,[0,1] reduces to the following
PC[0,1] = {z : x|y, € C[0,t1], x|y, 1 € C(t1,1],
there exist z(¢; ) and x(¢]) with x(t]) = z(t1)}.
And the space PC|0, 1] is a Banach space with norm
lellpe = sup{la(®)] - ¢ € [0,1]}.

Lemma 2.1. The linear impulsive boundary value problem

Du(t) — Mu(t) = o(t), te (0,1]\{t:}, (2.1)
Jim, o (t) = u(1), (2.2)
tlir?r(t — 1) 7% (u(t) — u(ty)) = ay, (2.3)

where A\, a1 € R are constants and o € C|0, 1], has a unique solution u € PC1_4[0, 1] given by

u(t) = /O Gt $)0(5)ds + ()Gt t1)a, (2.4)

where

G)Ha(t, S)

L) Poa W) B e QU= N TA=0)* L |y gya=1g (At —5)7), 0<s<t<1
- ’ 0 S t<s< 1,

and Eq o(X\) = > 520 F((%kl)a) is Mittag-Leffler function (see [6]).

Proof. By Theorem 3.2 in [2], we have that

a(t) = /01 Gral(t,s)o(s)ds, te (0,1]\ {t1} (2.5)
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is a unique solution of the linear problem (2.1)-(2.2), and u € PCy_,[0,1]. Set
w(t) = Gralt, t1)T(a)ar, te0,1].

For each t < t1, we have

F(a)zEma()\(l — tl)a)(l — tl) a1
1 —T(a)Eqa(N)

Dow(t) DO (1% B a(A%))

(@ FaaM = 1)) = ) (SN
) L= T a0 o ()

Using the identities

L(p+1) - -1
Dot = —H T e s 1) pegelog,
Tati—a) W>-D
we get
[(@)2EaaM1—t)*)(1 — )%ty & N o
Do _ ) a(i—1)—1
w(t) I~ T(@)Ena(V) ;2 Tl —1))"

_ F(a)zEa,a()\(l—tl)a)(l—tl)a*1a1 0 z 1 il

1-— F(Q)Ea,a()‘) i=1

. F(a)zEa,a(A(l — tl)a)(l — tl) a1 a— )\ta i
=A I —T(@)Enal) o Z (@i + )

D(a)Eqa(A(1 — 1)) (1 — 1) 1 B, o (M)
1 —-T(a)Eqa(N)

= )\Ga,a (t, tl)F(a)al = )\w(t), t<t.

= IN'a)ay
Similarly, we can obtain that

D%w(t) — dw(t) =0, t>t.
Thus, we have D%w(t) — Aw(t) =0 for ¢t € (0,1] \ {t1}. Moreover, we have

lim '~ %w(t) — w(1
Jim 7 %w(t) —w(l)

— lim 7517011“(@[)2157@,«1@(1 — )M =t)* e
G 1 —T(a)Eaa(N)

<r(a)Ea,a(A(1 —t1)*)(1 = t)* ' Eqa())
1 —T(@)Eaa(N)

t By o (M)

+(1- tl)o‘_lEa,a()\(l — tl)“)> IN'a)ay

D(a)EaaA1 —11)?)(1 — 1) tay B (1—t1)* 1 Eya(A1 —t1)M)(a)ay
1 —T(a)Eqa(N) 1 —T(a)Eqa(N)
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lim (t — t1)' " (w(t) — w(ty))

t—t}

= lim (t — 1) (t — 1) ' Eq oA\t — t1)*)T(a)ay

t—t]

= lim E, oAt —t1)*)()a; = lim Z

t—tt t—tT i) m
= ﬁf(a)al =a.
In consequence,
u(t) =a(t) + w(t) = /01 Ghral(t,s)o(s)ds +T'(a)Gxa(t, t1)ar
is the solution of problem (2.1)-(2.3).

Next we prove that the solution of BVP (2.1)-(2.3) is unique. Suppose that wuj,us €
PC,_4]0,1] are two solutions of BVP (2.1)-(2.3). Let v = u; — ug, then we have

D(t) — dv(t) =0, te(0,1]\{t:}, (2.6)
th%lJr 7= (t) —v(1) =0, (2.7)
tlirtr}r(t — 1) (w(t) —v(ty)) = 0. (2.8)

By (2.5) and (2.6)-(2.7), we get that v(¢t) = 0 for any ¢ € (0,1] \ {¢1}. Since v € PC;_,]0,1],

we have lim, ,- t!=%v(t) = ¢;"“v(t;). On the other hand, lim, ,- 1=%v(t) = 0. Thus, we
1 1

obtain that v(t;) = 0. Hence, u;1(t) = wua(t) for each t € (0,1]. Moreover, by (2.7), we

have lim,_+ t!~%v(t) = v(1) = 0, which implies that lim, o+ t'=%u(t) = lim,_o+ '~ %ua(t).

Therefore, u; = us.

Remark 2.2. For o = 1, Lemma 2.1 reduces to the one for a first order linear impulsive

boundary value problem
3. Main results
Lemma 3.1. Suppose that

(H;) there exist positive constants M and m such that
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[ftGu) <M, [I(u)] <m, viel0,1], ueR, (3.1)
holds, then the operator A : PC1_,[0,1] — PCi_,[0,1] is well defined.

Proof. Define the operator A as follows :

(Ax)(t / Cirat, )£ (s, 2(s))ds + T(@)Gralt, t1)I(2(t)): (3.2)

By Lemma 2.1, it is easy to see that a function z is a solution to (1.1)-(1.3) if and only
if z is a fixed point of A. Using (H;), we check that t'~%(Au)(t)|p,) € C[0,t1] and (t —
1) (Au)(t)|(t, 1) € C(t1,1]. Here, we only prove that (t — t1)'"*(Au) ()| 1) € C(t1,1].
Similarly, we can prove that t'~*(Au)(t)|j] € C[0,t1]. For every u € PC1_4[0,1], for any

71,72 € (t1,1] with 71 < 75, we have

}(Tl —t1)' " (Au) (1) — (2 — tl)lfa(Au)(TZ)}

(11 —t1)! / GralT1,8)f(s,u(s))ds — (12 — t1)" / GralT2,8)f (s, u(s))ds

+ ’(Tl — tl)lfal“(a)G,\,a(ﬁ,tl)I(u(tl)) — (TQ — tl)lfal“(a)G,\,a(Tg,tl)I(u(tl))’

/1 (@) Eaa(A1 —5)%)(1 —s)*t
0 1 —T(a)Eqa(N)

x[(11 — ) B a AT = (12 — 1) B o (A8 N £ (5, u(s))ds

+ /OTI[(ﬁ — )7 = 8)*  Epa(A(11 — 5)%)

—(m2 — tl)l_a(Tz - S)O‘_lEa,a()\(Tz —8)M)]f (s, u(s))ds

_ /T P — 1) (1 — )% B a(M(72 — ) (s, uls))ds

1

+ ’[(7'1 —t) TG a(T1, 1) — (12 — tl)lfaGA,a(T%tl)]F(a)I(u(tl))’

I(a)M
1 -T()Esa(N)

X /01 Eaa(M1 = 8))(1 — 8)°'ds

‘ ‘(7'1 - tl)l_aEa,a()‘T{X)Tla_l — (12— tl)l_ Eq oz()‘TQ ) 1’

+M((TQ - tl)l_a — (Tl — tl)l_a) /07—1 (T1 — S)Oé_lEa@()\(Tl — S)Oé)ds

M (= t1) 0 /0 T = ) Eaa (AT — $)%) — (12 — ) Eaa(A(72 — )%)|ds
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My — 1) / P (1 = ) B a(Mr2 — 5)%)ds
T2(a)mEa o (A1 — 11)*)(1 — t1)1-
|1 - F(O‘)Ea,a(A”

x| (11 = 1) O T B o (M) — (12 — 01)' 778 Ba o (A15))
+Eaa(AM11 — t1)Y) — Eaa(A(m2 — t1)?)]
— 0, as T — 79,

since

1
/0 Ea,a()‘(l —8)*)(1 - S)Oﬁlds = Ea,aJrl()‘) < Ea,a+1(|)‘|)a
1
/0 Eaa(A11 = 8)*) (11 — 5)*'ds = 70 Ea,a41 (A1) < 70 Ea g1 (A1),

/: Eaa(\(72 = 5)*)(12 = 5)*"'ds = (12 = 71)* B a1 (M12 — 71)%),

and

/oT1 (11 = 5)* ' Eaa(M11 — 5)) = (12 = 8)* ' Ba,a(A(72 — 5))|ds

i |)\|z /7—1
= INai + «) Jo

tend to zero as 71 — 7o by (4.13) and (4.14) in [2].

(7'1 _ s)az’Jrafl _ (T2 _ S)CVZ"FCV*l’ ds

So, (t —t1)'"*(Au)(t)| 1] € C(t1,1]. On the other hand, we have limtﬂt;(Au)(t) and

lim (t — 1)~ (Au)(t)

t—tt

= lim (t—t;
t—»tj( )

ol [AT(Q)Eaa(MY) Ey o M1 — )21 (1 — s)21
1 l/o T T a)Ean ) f(s,u(s))ds

+/ )4 1Eaa()\(t—s) ) f(s,u(s))ds

F(Q)Ea,a()\ta)Ea’a()\(l —t )a)ta(l _¢ )afl
+I'(ar) < . F(a)Ea@l()\) 1

+(t = 1) Eaa (Mt = 1)) I(u(tr))]

= lim (t — t1)' 7% T(@)(t — 1) ' Eqa(A\t —t1)*) I (u(ty))

t—tt

EJQTDE, 2011 No. 3, p. 7



= I(u(t1))
exist. Thus, A: PCi_,[0,1] — PC1_,[0,1].

For convenience, set

Q « _ a—1ia a 2

(F(a)):sEa,oz(‘)“t(f)Ea,a(‘)“(1 —t)*) (1 - tl)zail

= 4
Mo 1 (@) Eaa(VIT(20) ’ (34)
D()(Ba,a (D)) 20—1 —a Na)? .
My = { F\p[;g(a)(E;,agAE\al + (1= t)! Ea,a(|>‘|)2(1‘52;)) , if0<a<y, (3.5)
(o] oo 1T —« N . N
(\1)f(r(¢;)ga,|i)(x)l\a +(1—t)! Eava(|>‘|)(rg2¢)y)) ; if 3 <a<l,

(@) B (A) B (A1 — 1)) (1 — 1)
Mi:= 1= T(0) B (VT (20) ’ (3.6)

(L())* Baa (A1) Baa (ML — t)*)t8 ™ (1 — 1)
’1 - P(O‘)Eoz,a()‘)’ 7

N1 =

(F(O‘))QEQ,QOM)Ea,a(|)\|(1 _ tl)oz)t%an
|1 —T()Eaa(N)]

(a
Theorem 3.2. Suppose that (H;) and the following condition hold:

Ny = + (@) Ega (N1 — t1)®)t5 1 (3.8)

(Hg) there exist positive constant k, and | such that
lf(t,u) — f(t,0)| <klu—v|, [I(u)—I0W)| <lu-—0v|, Vtel0,1], u,v € R. (3.9)
Then the problem (1.1)-(1.3) has a unique solution in PCy_4|0, 1], provided that
max{k(M; + Ms) + INy, k(Ms + My) + INo} < 1. (3.10)

Proof. By (H;) and Lemma 3.1, we have A : PC1_4[0,1] — PC1_,[0,1]. For any z,y €
PC1_4]0,1], and each t € [0,t1], we obtain by (Ha) that

£ (Az) (1) — (Ay)(t)] < /OltlalGA,a(t, s)I|f (s, z(s)) — f(s,y(s))|ds
+H T (@) |G ot 0)| [ (2(t) = T(y(t)]

< [ 1 G alts IKIa(s) — u(s)lds + £ T (@Gt ) haltr) — y(tr)

t1
— ke [ Gt ) () ()l ds
0
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1
+h [ 170Gt )|(s — )7 (s = 1) a(s) — y(s)lds
1

HIT ()t ™G a (b, 1) 6512 (t1) — y(t)]

t1
<l =yl [k [ 8 UGt sl s
0

1
k[ Gt $)[(s — £1)2 s + ID(@) G at, tl)\tf‘_l] . (3.11)
t1

From the expression of G 4(t, s), and (4.21) in [2], we have

D() Eaa(MY) Eqa(A(1 — 8)2) (1 — s)ot

[t s < [ e I~ I(a)Ban() s
tlfa _Safl — 5@ safls
+ [ o= 9 BaalAt - )5
L(@)Ea,o((Nt9)Eao (AN = t)>
: 1= T(0) B (V) fioas
B A (AE) /0 (t — 5)* 152 1ds
D) Eao(At$)Eaa (XD —t)* 1, oy (D(a))?
= = (a)Ean(N]a " Baa (A g
a (e} _ a—1ia a 2
< T Bl Bun COL I s Tl =M1 (312)
And
/t1 tlfa\GA,a(t, s)|(s — tl)aflds
L IT(@) Ea o (At?) Eg 0 (A1 — s))to1(1 — s)>! o
<" 1= T(a)Eaa() (oo
F(Q)Ea@(‘)“ta)Ea,a(p“(1 — tl)a) ! a— a—
: T~ D) Bara (V)] Ja=ore— s
_ (P(O‘))?’Ea,a(‘)“ta)Ea,a(‘)“(1 —1 )a)(l —1 )20[71 _
- 1 —ll“(a)Ema()\)]P(;a) : = M, (3.13)
! a— a— _ 1=t a— a— _ a— (F(Oé))Q
/tl (1= ) 1(s—t1) 1ds_/0 70— ) s = (1 )T e
(3.14)
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Moreover, we have

D(a)t! ™G alt, t) 7™

(P(O‘))2Eoz,a(‘)“ta)Ea,a(‘)“(1 - tl)a)ta_l(l - tl)ail N
: - N EanN] - 19

Substituting (3.12), (3.13) and (3.15) into (3.11), we get

2 7 AD)(0) = (A)(O] < RO+ )+ M) = o (3.16)

On the other hand, for each z,y € PC1_,[0,1] and ¢ € (¢, 1], we obtain that
(t = t1)' " |(Az)(t) — (Ay)(t)]
< [ 001Gt )15, 2(5)) — S, uls)lds
0
+H(t = t1)' 7T (@)|Grat, 1)L (2(t) = I(y(t))]
1
< [t~ 101G alts) Hla(s) — y(s)lds
0
+H(t = t1)' T (@)|Gra(t, tr)llz(tr) — y(t)]

t
= [ (= )Gt 5) 575 a(s) — ys)lds
0

+k tl(t — 1) T Gra(t 8)|(s — 1) (s — 1) Tz (s) — y(s)lds
+(t = 1) T ()| Gaa(t, )T 0 (t1) — y(t))]

t1
<l = yll1-a [k [ =0 1G5l s

1
+k [ (t—t) Y Gralt,8)|(s — t1)¥ M ds + 1T (@) |G ot t1)|(t — t1) 725
t
' (3.17)

By (4.21) in [2], we have

t1
/ (t — t1)7|Gralt, s)|s* ds
0

t1
0

+ / (= 1)1 — )7 B (A — )%)|s" s
0

D() Ea.a(MY) Eq (A1 — 8)®)t* (1 — s)o !

a—1
1—T(a)Eaa()) stds
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oD@ Baa (AP A 1)
= -#) [Er ey AR

t
(1 _tl)l—aEa,a(\A\)/ (t — 5)* 152 1ds
0

_ D(@)(Baa(AD)* 5

_ l1—a 200—1 (P((X))2
= S e + (1= ) Baa(A)e

I'(2a)

() (Eaa ()3
T 1 -T(a)Eqa(N)|a

a 2 .

77 (1 — 1) Baa(N) Rl if 0<a <3,
a 2 .

(1= 1)1 Ba (M) Fd iff<a<i,

= Ms. (3.18)

From (3.14), we get

1
/ (t — )| Gralt, )|(s — £1)°"Vds
t1

1
_ (t— tl)l—oz
t1

(@) Eq,o (MY Eq o(A(1 — 8)®)t (1 — s)o !
1 -T(a)Eq ()

(s —t1)* Lds

o _ aypa—1
< (1 - tl)l_ar( )Ea’a’(lp\_’)f?&(;%ﬂil()\)’tl) )tl /tll(s - tl)a_l(l — S)a_lds

_ (F(a))gEa,a(|)\|)Ea7a(|)\|(1 — tl)o‘)t‘f‘_l(l _ tl)oz B
- 11 —(a)Eqa(N)|T(2a) = Mj. (3.19)

Moreover, we have

T(0)|Gaa(t )| ( — )00

_ (D(0) a (A1) Baa (ML~ 1)) (1= )7 (¢ — )0t~
N ’1 - F(a)Ea,a()‘)’

()t Baa (Al — 1))

< (P(O‘))2Eoz,a(‘)“)Ea7a(‘)“(1 — tl)a)t%a_Q
N ‘1 - P(O‘)Eoz,a()‘)’

+T() Ea (N1 — t))t5 ! = Ny. (3.20)
Substituting (3.18)-(3.20) into (3.17), we obtain

tES(ttlpl](t — 1) 7|(Az) (1) — (Ay)(t)] < (k(Msz + My) +IN) |z — yll1-a (3.21)
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From (3.11), (3.16) and (3.21), we have

Az — Ayll1—a

= max {t:[lé’li;] 7| (Az)(t) — (Ay) ()], tes(ltlfu(t — 1) (Az)(¢) ~ (Ay)(t)|}
< max{k(My + M) + I[Ny, k(M3 + My) + IN2}H|z — yll1—a) (3.22)

which implies that A is a contraction (by (3.10)). Therefore it has a unique fixed point.

4. An example

The following illustrative example will demonstrate the effectiveness of our main result.

Example 4.1. Consider the nonlinear impulsive fractional differential equation with periodic

boundary conditions as follows:

1 t?
DO9(t) — gu(t) =B arctanu(t), te (0,1]\ {0.5}, (4.1)
lim t*Mu(t) = u(1 4.2
Jim u(t) = u(1), (4.2)
1
tii(%+(t —0.5)% (u(t) — u(0.5)) = 3 sin(u(0.5)). (4.3)
Then BVP (4.1)-(4.3) reduces to BVP (1.1)-(1.3) with a = 0.9, A = 1, f(t,u) = tgfr% arctan u,

I(u) = 5 sinu and t; = 0.5.
Obviously, there exist positive constants M = 53, m = %, k= % and [ = %3 such that
Ftw) <M, |[[(w) <m, te[0,1], ueRr,
and

lf(t,u) — f(t,0)] <klu—v|, |[I(u)—I0W)| <lu-—2v|, te][0,1], u,v € R.

So that the conditions (H;) and (Hz) hold. Moreover, we have

Foal®) = Bos0s (3 ) = rog * 370187 + 7007+ 355+ s
P T ORI T T(0.9) T A0(18) T 3T(27) T BT(R.6) | 3T(45)
Thus, we obtain
1 1 1 1
. AN — 1.3656, 44
0:0.0:9 <3> r(0.9) ' 30(18) | BT "

and
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> (1) 1 1 1 n 1 (1 n 1 n )
0.9,0.9 3\ T3

<
3) < T(0.9) "3r0R) " 3T
— 1.3656 + 0.0185 = 1.3841. (4.5)
Similarly, we have
1
Eoo(AtT) = Eao(|A(1 —t1)%) = En9,0.9 <m) < 1.149. (4.6)

By (4.4)-(4.6) and simple calculation, we can obtain the estimation of My, My, M3, My, N7 and
Ny (are as in (3.3)-(3.8) as follows :

M; <3.019, My <1.9351, M3 < 4.2091,

My < 24333, Nj <3.6183, Nz <5.6709.

Hence, we get
max{k‘(Ml + M2) + Iy, k’(Mg + M4) + ZNQ} =0.9898 < 1,

that is (3.10) holds. So, it follows from Theorem 3.2 that the BVP (4.1)-(4.3) has a unique
solution in PCy 110, 1].
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